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Homework 5

3.4
Exterior Angle Inequality

We’ll start off with a definition of Exterior Angle.

Let (ABC be given and suppose D is a point on 
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 with B – C – D.  Then (ACD is called an exterior angle of the given triangle.  The angles at A and B of the triangle are called opposite interior angles to the exterior (ACD.
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Each triangle has 6 exterior angles.  Triangles in any of Spherical, Hyperbolic, and Euclidean Geometry have exterior and remote interior angles.

Now we’ve already studied a little Spherical Geometry.  On page 155, there’s an illustration of a spherical triangle and the sum of the interior angles is 238(.  One of the exterior angles is (BCD and it measures 91(.  So the sum of the measures of the remote interior angles is MORE than the measure of the exterior angle.

In Hyperbolic Geometry, the third of the big geometries we’ll study this semester, it turns out that the sum of the measures of the remote interior angles is LESS than the measure of the exterior angle.  I go into all the details of the axioms and the model when we get there, promise.

And in Euclidean Geometry, when we get there, the sum of the measures of the remote interior angles exactly equals the measure of the exterior angle.

This is what I call the “Goldilocks Effect for the Big Three Geometries”.

With respect to the sum of the interior angles of a triangle,

· Spherical is > 180(
· Hyperbolic is < 180(
· Euclidean is = 180(
With respect to the curvature of the space,

· Spherical is +1

· Euclidean is 0

· Hyperbolic is (1

So, here we are just past the SAS Axiom.

We’ve not made any choices about which geometry, Euclidean or Hyperbolic, that we want to work in so the most we can say about the measure of an exterior angle is that it is larger than the measure of either remote interior angle.

Theorem 3.4.1
The Exterior Angle Inequality

page 156

An exterior angle of a triangle has angle measure greater than that of either remote interior angle.

This theorem is interesting because it is the first in the line to use a nifty construction technique.  And note that the theorem does NOT use any part of the concept of parallel lines.  We haven’t made our choice about parallel lines yet so we can’t use them or any chitchat about alternate interior angles yet.

Proof

Let (ABC be given and let (ACD be the exterior angle under consideration.  We will show that one exterior angle is larger than one of it’s two remote interior angle.  The proofs for the other remote interior angle and the other 5 exterior angles in their various configurations are similar.
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Let M be midpoint on segment 
[image: image2.wmf]AC

.  By the definition of midpoint AM = MC.  Now extend 
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 to point E so that M is the midpoint of 
[image: image4.wmf]BE

.  By the definition of midpoint, we have BM = ME.  Because they are vertical angles m(AMB = m(EMC.  When we connect E and C with a segment, we have that (AMB ( (CME by SAS. [be really careful to put the vertices in the right order here].  
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By CPCF, we have that the m(ACE* = m(A from the original (ABC.  I want to use the Angle Addition Postulate so have to show that point E is in the interior of the exterior angle (ACD.   Point E is in H(D, 
[image: image5.wmf]AC

) and in H(A, 
[image: image6.wmf]BC

) and it is in the intersection of these two half planes so it is in int(ACD.  Thus m(ACD = m(ACE + m(ECD.  Substituting from * above we have m(ACD = m(A + m(ECD.  Now the m(ECD is a number strictly greater than zero by Axiom so m(ACD >m(A, one of the remote interior angles from it.

There are three nice corollaries to this theorem:

· The sum of the measures of any two angles of a triangle is less than 180.

· A triangle can have at most one angle A with m(A
[image: image7.wmf]³

90.

· The base angles of an isosceles triangle are acute.

These corollaries are NOT true in Spherical Geometry.  This is easy to check with a triangle that has a base on the equator and two sides that run through the North Pole.

Examples 1 and 2 (page 157) are very pertinent to the homework problems.

I’ve attached a totally different proof of the Saccheri-Legendre Theorem.

Theorem 3.4.2

Saccheri-Legendre Theorem

The angle sum of any triangle is less than or equal to 180.

We’ll begin with a brief discussion of some theorems from Real Analysis and then we prove two lemmas and THEN, finally, we get to the Saccheri-Legendre Theorem.

First, note the Archimedean Property of real numbers, this is a theorem in Real Analysis, here, we’ll just take it as a given.  For any real number x, there is a natural number n such that n > x.  And then we’ll use the Density Property of real numbers.  If x and y are any two distinct real numbers and x < y, then there is a rational number q between them (x < q < y).

Lemma 1
The sum of the measures of any two angles of a triangle < 180.

Let (ABC be any triangle.  Let D on 
[image: image8.wmf]BC
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with B – C – D.  Number the angles of the triangle as shown.
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By definition, (4 is an exterior angle of (ABC.  Thus m(4 > m(1 (3.4.1).  Since 

m(4 + m(2 = 180, we know that m(4 = 180 ( m(2.  By substitution the equality becomes an inequality,  m(1 < 180 ( m(2.  So that m(1 + m(2 < 180. (
Lemma 2
For any (ABC, there is a (A’B’C’, having the same angle sum as (ABC 


and where the m(A’ 
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 1/2  m(B.

Let (ABC be any triangle and let E be the midpoint of AC.  Double 
[image: image10.wmf]BE

and name the new endpoint F.
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(AEB 
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 (CEF by SAS. m(2 = m(5 and m(3 = m(6 by CPCF.

Let 
[image: image13.wmf]ABC

å

be the sum of the interior angles of (ABC.
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m(A + m(B + m(C = 



m(1 + m(2 + m(3 + m( 4 = 



m(1 + m(5 + m(6 + m(4 = 
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So these two triangles have the same sum of the interior angles.

Note that m(B = m(1 + m(2 = m(1 + m(5
(by substitution)

Now since these are real numbers, one of m(1 or m(5 is less than or equal to ½ m(B.

Thus (BFC is the triangle we wanted for our lemma. (
The following is an elimination proof – the angle sum can be greater than 180 or less-than-or-equal-to 180.  We eliminate the greater than case using a contradiction and we’re done.

Saccheri-Legendre Theorem  

The angle sum of any triangle is less than or equal to 180.

Proof

Suppose (ABC has an angle sum of 180 + p with p > 0.  Using Lemma 2, we can produce a triangle (A’B’C’ with m(A’ 
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 ½ m(A.  With a second application of Lemma 2, we get (A”B”C” with m(A” 
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 ½ m(A’
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1/4 m(A.

With the nth application of Lemma 2, we have (AnBnCn with m(An 
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With the Archimedean property of real numbers, we know that we can select a natural number Q large enough so that

m(An 
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 p (the p that was added to 180 in the opening statement).  This means that if I pick 
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> 0 carefully enough, I can say that m(An + 
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 = p.

Now we have 
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ABC = 
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 AnBnCn = m(An + m(Bn + m(Cn = 180 + p.  Substituting for p we get  m(An + m(Bn + m(Cn = 180 + (An + 
[image: image28.wmf]e

.  Subtracting (An  from each side, we get m(Bn + m(Cn = 180 + 
[image: image29.wmf]e

 which contradicts Lemma 1.  So the case of the sum of the interior angles being greater than 180 is not true.  This leaves our theorem as stated. (
Homework hints:

Problem 6
see Exercises 1 and 2

Problem 16

Problem 20

3.5
The Inequality Theorems

Theorem 3.5.1
Scalene Inequality Theorem
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Well proved.

The two corollaries are very handy to know

And we finally get the Triangle Inequality Theorem
 
page 167

This theorem uses a nifty little construction idea to make an isosceles triangle – something we know a lot about.  And then it uses 3.5.1, the Scalene Inequality Theorem to finish up.

Example 1 models a homework problem

Theorem 3.5.2

SAS
INequality Theorem



often called the Hinge Theorem (and sometimes in high schools: the Alligator Theorem)

If we have congruent sides on two angles of DIFFERENT measure, we know something about the relationship of the sides across from the enclosed angles.

If in (ABC and (XYZ, we have AB = XY and AC = XZ but m(A > m(X, 

then BC > YZ and conversely (i.e. iff) if BC >YZ, then m(A > m(X.

Let the two triangles be as described.  By the Segment Construction Theorem, we will insert a ray inbetween the sides of (A so that the constructed angle has the same measure as (X.  We will then select point D and truncate the ray so that AD = XZ  This will then give is two congruent triangles:  (ABD 
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 (XYZ.
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Now we will construct the angle bisector to (DAC.  This ray will intersect side 
[image: image31.wmf]BC

at an interior point E (We know this from the Crossbar Theorem page 109).   Connecting D and E with a segment, we get two triangles:  (ADE and (ACE.  These triangles are congruent by SAS.
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Now let’s look at the sides across from the enclosed angles.  By construction, we have that 
[image: image32.wmf]YZ
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.  Because B – E – C, we have BC = BE + EC.  Now EC is congruent to DE.  Looking a triangle BED notice that BE + ED is larger than BD by the Triangle Inequality.  So BC = BE + ED > BD = YZ.  Thus the first assertion is proved.

The converse argument is very similar to 3.5.1 (2) on page 167.

(
Example 2
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An unusual application of the SAS INequality Theorem.

Let C be a circle with center O and diameter QR.  Let P be a point on either semi-circle.  Let P traverse the semi-circle and let   = ( POQ.  Define the function 
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.  Demonstrate that the function is increasing.


(Aside:  If x >y, then f(x) > f(y) for an increasing function.)
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Let’s show two locations for P on the circle.
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We have  (1 with dashed lines and (2 with the heavy lines.  Note that    >  .  And, since the sides of both angles are radii, all 4 lines are congruent.  Thus, by the theorem above P1Q > P2Q.  Since both locations for P were arbitrary, the assertion is demonstrated.

Homework Hints

8
sketch the triangle and begin with the Triangle Inequality for it

12
Note that we do NOT “know” that there’s 180( to the sum of the interior angles of a triangle, thus you do not know the number of degrees in (QST.

16
This is a theorem, please use good form

3.6
Additional Congruence Criteria

The proof of AAS (Theorem 3.6.1) as a congruence shortcut is a nice one and it completes the list of shortcuts to declaring congruence.  We have ASA and SSS (from 3.1). 

Theorem 3.6.1

AAS Congruence Criterion

If under some correspondence between their vertices, two angles and a side opposite in one triangle are congruent to the corresponding two angles and side of a second triangle, then the triangles are congruent.

Proof

Let (ABC and (XYZ have the relationship described above.  m(A = m(X, 

m(B = m(Y and AC = XZ.  To show that m(C = m(Z, we will suppose that they are not equal and further that m(Z < m(C.
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By the Angle Construction Theorem, we have a unique ray in between the sides of (C such that its measure is the same as (XZY.  By the Crossbar Theorem, this ray intersects side AB at an interior point D. 
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This creates two triangles:  (ADC and (CDB.  Now (ADC is congruent to (XYZ by construction.  This means that m(ADC = m(Y by CPCF.  This is, then, a real problem.  m(B = m(Y by hypothesis BUT (ADC is an EXTERIOR ANGLE of (CDB and is thus greater than (B = m(Y.  So our hypothesis is incorrect.  

A similar proof will show the same contradiction if we assume that m(C < m(Z.

So we know that their angle measures are equal and that (C 
[image: image36.wmf]@

 (Z. (
There’s a brief discussion of why SSA is NOT a shortcut in the middle of page 175.

It’s not a totally useless relationship, though.  With a tweak it can give us some information.

Theorem 3.6.2

If we have the SSA criterion satisfied with a correspondence between two triangles AND the triangles are not congruent, then the remaining pair of angles are supplements (not the congruent pair and not the pair enclosed by the congruent sides).
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(ABC and (ABD are not congruent, but they share (A, side AD and have that the sides

CB and BD are congruent.  So the have SSA.  Thus m(1 + m(2 = 180.

Corollary A
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is another case of making lemonade.  It’s nice to know.

Corollaries B – E are handy.

You have to prove Corollary E in the homework.

In text Example 1
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A typical construction proof problem.  Similar to a million problems in high school books.  It’s well done.

The distance between any two point sets is defined to be the minimum of all the distances between ANY two points, one in the first set and the other in the second.  This can be a very messy job if the two point sets are irregularly shaped and each has an infinite number of points.  Luckily there’s a shortcut for a single point and a line.

Another important definition, page 175

The distance from any point P to a line L not passing through P is the distance from P to the foot of the perpendicular segment Q from P to L.  A point is equidistant from two lines iff the distances from the point to the two lines are equal.

Example 2 is nice because reviews vocabulary and demonstrates both constructions and the direct approach to a proof.  page 179

Homework hints

Problem 4
is a guided proof. REWRITE it in a prose format.

Problem 8

Problem 10
This is a proof.  Write it up nicely, please

Enrichment problem:

Given a point P that is not on line L illustrated below, why is PA < PB?  In other words, how do we know the definition above is correct?  You may not cite the definition as your reason, you need to prove it thereby confirming the definition.   Hint:  you need the Saccheri-Legendre Theorem with this proof.
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3.7
Quadrilaterals

This section starts off with a necessarily long and detailed definition of a quadrilateral.  The most important point to take in is that a quadrilateral is the union of 4 point sets with some restrictions on the arrangement of them in space.  There’s some necessary vocabulary – again, note the set work underlying the geometry, the arrangement in space.

Then the author restricts our inquiry to convex quadrilaterals.  Page 183 ends with a list of nice useful properties – three of them.  These are actually theorems with routine proofs.

On page 184, we encounter the definition of congruence for two quadrilaterals.  There are 8 pairs to check. Theorem 3.7.1 gives us the shortcut SASAS.

Recall that a square is a Euclidean-specific object because it has 4 right angles.  In Hyperbolic geometry, when you try to build a square you get a quadrilateral that has 2 right angles and 2 acute angles while in Spherical Geometry, you get 2 right angles and 2 obtuse angles.

The main point of this section is to introduce Saccheri Quadrilaterals.  These quadrilaterals appear in each of  Euclidean, Hyperbolic, and Spherical Geometry exactly as defined.  Here’s a picture of a Saccheri quadrilateral
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(BAD and (CDA are right angles.


[image: image37.wmf]BA
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[image: image39.wmf]CD

 ( 
[image: image40.wmf]AD


Thus we define a Saccheri Quadrilateral as a quadrilateral with 2 opposite sides congruent and two adjacent right angles.  One all encompassing phrase is “biperpendicular quadrilateral”.  The author has a construction-based definition and illustration on page 186.  Note that we simply do not discuss the length of the summit or the measures of the summit angles – that’s because those parts have different properties in each of the “Big Three” geometries.  

Here’s a summary of the properties of a Saccheri Quadrilateral in the 3 geometries:

	Euclidean Geometry
	Hyperbolic Geometry
	Spherical Geometry

	summit length = base 
	summit shorter than base
	summit longer than base

	summit angles = 90(
	summit angles are acute
	summit angles are obtuse


Lemma:
A Saccheri Quadrilateral is convex.

This is true in all three geometries.

Theorem 3.7.2
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The summit angles of a Saccheri Quadrilateral are congruent.

Proof (different from the text):

Let ABCD be a Saccheri Quadrilateral.  Construct diagonals 
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 and 
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Now consider (BAD and (CDA.  They are congruent by SAS.  This means that 

(CAD is congruent to (BDA by CPCF.  From properties of a quadrilateral on page 183 and the Angle Addition Postulate, we have the following equations and we will subtract them:

m(BAC + m(CAD = 90

m(BDA + m(BDC = 90

Thus m(BAC ( m(BDC = 0 .  So these are congruent. 

We have also that 
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 by CPCF.  Thus (BDC is congruent to (CAB by SAS.

This makes the summit angles congruent by CPCF. (
This is a much more contructionist argument than the one in the book.  I find that it gives a better feel for how to work with Saccheri Quadrilaterals, too.

There are 4 properties of Saccheri Quadrilaterals in the text on page 187.

Saccheri was an Italian Jesuit priest whose grasp of logic was impeccable.  His work was complimented by the Englishman Lambert who also has a quadrilateral named for him.  The Lambert quadrilateral has 3 right angles and the measure of the 4th angle varies with the geometry it’s in.

Saccheri’s plan was to eliminate two of the possible cases for the summit angles of a quadrilateral, thereby proving that Euclidean geometry was the only true geometry.  He failed at that, but he did eliminate the Hypothesis of the Obtuse angle.  This is because Spherical Geometry is not a model for the axioms we’re using.  Unfortunately, and unknown to Saccheri, Hyperbolic Geometry is a model and it is the geometry that fulfills the Hypothesis of the Acute Angle.

Theorem 3.7.3
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The Hypothesis of the Obtuse Angle is not valid in Absolute Geometry,

We will look at the Triangle Associated with a Saccheri Quadrilateral to eliminate the Hypothesis of the Obtuse Angle.

The construction is in the text.

Here’s the illustration and a summary of what is given or true by construction:
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Drop a perpendicular

from A to 
[image: image45.wmf]B'C'

 and call the point of intersection D.

T1 ( T2 and T3 ( T4 because of AAS (right angle, vertical angle, half the side).

This makes BB’ ( CC’.  Thus BB’C’C is a Saccheri Quadrilateral by definition – it’s just upside down from the usual picture.  I’ve used greek symbols for the congruent angles in each; these are congruent by CPCF. (and 
Now the sum of the interior angles of the triangle is less than or equal to 180 by the Saccheri-Legendre Theorem.
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Note that (A =   

So m(A + m(B + m(C ( 180, which with substitution and a little reorganizing becomes
m(B + m(  + m(C + m(  = x ( 180.  Now m(B + m(  S1 is the measure of a summit angle and m(C + m(   S2 is the measure  of the other summit angle.

So we have S1 + S2 (  180.  Since we know that the summit angles of a Saccheri Quadrilateral are congruent S1 = S2 = 90 and we have 2S =  S1 + S2 (  180. So

S (  90.  Thus the summit angles are not obtuse. (
Problem 21, page 193

Show that the summit length of a Saccheri Quadrilateral is greater than or equal to the base length.

Proof

Let ABCD be a Saccheri Quadrilateral
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This means that m(A = m(1 + m(2 = 90 by definition.  By properties of quadrilaterals, point C is an element of int(DAB.

By Saccheri-Legendre,

[image: image48.wmf]ABC180
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Which is to say that m(2 + m(3 + 90 ( 180 so that m(2 + m(3 ( 90.

Since  m(1 + m(2 = 90, we know that m(1 + m(2 ( m(2 + m(3, thus

m(1 ( m(3.

In considering ( DAC and (BCA, note that we have ( 1 and ( 3 enclosed by congruent sides (they share the diagonal and the outer sides are legs of the Saccheri Quadrilateral) and the measures of the angles are not equal.  By the Hinge Theorem, then, we have 

DC ( AB. (
Note that a refinement of the Saccheri Quadrilateral is the Lambert Quadrilateral.  A Lambert Quadrilateral has three right angles.  You have a homework problem with a Lambert Quadrilateral.

Homework hints

Problem 4
Use the facts about Saccheri Quadrilaterals

Problem 10
See my proof of 3.7.1

Problem 18
Note that you actually ARE in Euclidean Geometry but you must do the work with the theorems through 3.7 in the book unless you prove them separately using what we’ve gotten so far.

Problem 20
Using geometry software – or using pipecleaners as side lengths – will help.  It’s harder if you just sketch.

In Class Work – Quadrilaterals in Absolute Geometry
If the legs of a biperpendicular quadrilateral are unequal, then the summit angles are unequal and the larger angle is opposite the longer leg.

[image: image75.emf]Show  m(CDA > m( DCB.

Hints:

m( A = m( B = 90 and AD < CB…givens

Construct  E on BC so that BE = AD….why can you do this?

Why is ABED a Saccheri Quadrilateral?

Why is m( ADE = m( BED?

Because m(ADC = m(ADE + m(EDC, we know m( ADC > m(ADE…why to both of these phrases?

(hint:  think axiom, then think algebra)

It follows that m(ADC > m( BED…why?

Why is m( DEB > m( C?

Why is m(ADC > m(C?

3.8
Circles

A circle is the set of all points in a plane that lies at a positive fixed distance from some fixed point O, called the center of the circle.

The radius, r, of a circle is both the number that is the constant distance from a circle point to O and any segment from O to a point in the set that is the circle.

A point P is said to be interior to the circle if OP < r and exterior to the circle if OP > r.

A central angle has as its vertex the center of a circle and its sides each contain one circle point.  

An inscribed angle has as its vertex one circle point and each of its sides contains another distinct circle point.  

A line that is tangent to a circle shares one point of the circle.

Please note the pictorial glossary on page 194 and the “theorem-ettes” as bullet points on page 195.

Example 1 bring up an interesting point.  It is actually an iff theorem and is nicely proved.  The error that most beginners make with it is in sketching “two congruent central angles”…there’s a real temptation to use vertical angles…which are a special case of congruent central angles, but not the arbitrary case.  Check out the illustration used in the text to see what should be used.

Not the right choice.

Example 2 is another iff proof.  These are both handy to know.

page 196 brings more vocabulary.  Note that a central angle subtends a minor arc, never a major arc because of our convention that angles must measure between 0 and 180.

Theorem 3.8.1
is essential to much of this section and done well in the text.  

Example 3 is a way to handle some of the homework questions.

Enrichment 1

Any three noncollinear points determine a Euclidean circle.

To see this, put 3 noncollinear point on a sketch (A, B, C).  Connect the points with two segments and then sketch the perpendicular bisectors of these segments.

The intersection point of the perpendicular bisectors is the center of the circle that contains the 3 points.  Recall the definition of perpendicular bisector:  at the point of intersection, each of the 3 points is equidistant from the intersection…the definition of center of a circle.
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Note that A, B, C cannot be used to create a Taxicab Geometry circle.  Just another difference between the two geometries.

Theorem 3.8.2

Tangent Theorem

A line is tangent to a circle iff it is perpendicular to the radius at the point of tangency.

Corollary

If two tangents 
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 and 
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 to a circle O from a common external 



point P have A and B points of contact with the circle, then 
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[image: image53.wmf]PB
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First a little review of the Intermediate Value Theorem from Calculus I:

If f is continuous on the closed interval [a, b] and k is any number between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = k.

Theorem 3.8.3

Secant Theorem

If a line L passes through an interior point A of a circle, it is a secant line of the circle and intersects that circle in precisely two points.

Proof

Let C be a circle with radius r and center O.  Let A be an interior point of C (OA = k < r) and B be an exterior point of C (OB > r) so that AB > 3r.  Let P be a point of 
[image: image54.wmf]AB
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 so that 

A – P – B; this is the closed interval [a, b] using the coordinates of these points.  Let (OAB = Now, eliminating the circle for a moment, we have the following scenario:

[image: image55.emf]k
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Let x be AP.   

d(x) is a distance function that is the distance from O to P.  As P moves between A and B d(x) varies.   d(x) is a continuous function (each component function is continuous and the composition of continuous functions is continuous).
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Note that if A = P, the d(x) = OA < r.  In fact, OA + 
[image: image57.wmf]e

= r for some positive constant 
[image: image58.wmf]e

.

So d(x) is a bit less than r at one end of our domain segment.

Now suppose AP = 2r = x.  By the Triangle Inequality, we have OA + OP > AP which, with substitution is OA + OP > 2r.  Which means that OP > 2r ( OA.  

But OA + 
[image: image59.wmf]e

= r…i.e. OA = r ( 
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.  Substituting this we have OP > 2r ( (r ( 
[image: image61.wmf]e

) = r +
[image: image62.wmf]e

.  So d(x) is slightly more than r when we’re in the interior of the segment on the way to B.  

Now OP = d(x), a continuous function on the segment [a, b}.  Now  our domain values are [a, b] and the range values take on every number in the segment from less than r to a bit more than r, in particular, r itself is a range value.  At the moment when d(x) = r we are at the circle point claimed in the theorem. (

Homework hints:

Problem 6
Construct it with technology and then measure it…THEN prove it.

Problem 12

Problem 18
Review the definition of convex sets on page 104
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